Elections

Problem Description

Elections are going on, and there are two candidates A and B, contesting with each other. There is a queue of voters and in this queue some of them are supporters of A and some of them are supporters of B. Many of them are neutral. The fate of the election will be decided on which side the neutral
voters vote. Supporters of A and supporters of B make attempt to win the
votes of neutral voters.
The way this can be done is explained below:
1. The voter queue is denoted by three characters, viz {-, A, B}. The – denotes neutral candidate, A denotes supporter of candidate A and B denotes
supporter of candidate B.
2. Supporters of A can only move towards the left side of the queue.
3. Supporters of B can only move towards the right side of the queue.
4. Since time is critical, supporters of both A and B will move simultaneously.
5. They both will try and influence the neutral voters by moving in their direction in the queue. If supporter of A reaches the neutral voter before
supporter of B reaches him, then that neutral voter will become a supporter of candidate A.
6. Similarly, if supporter of B reaches the neutral voter before supporter of A reaches him, then that neutral voter will become a supporter of candidate B.
7. Finally, if both reach at the same time, the voter will remain neutral. A neutral vote cannot decide the outcome of the election.
8. If finally, the queue has more votes for candidate A, then A wins the election. If B has more votes, then B wins that election. If both have equal
votes, then it will be a coalition government.
Refer Examples section for understanding the dynamics of how the supporters influence the neutral voters.
Your task is to find the outcome of the election. Note:                                                                                                                                                                                            There are no test cases where all votes are neutral.

Constraints

1 <= length of queue <= 10 ^ 5

Input

First line contains an integer which is length of queue of voters.
Second line contains characters {-, A, B}, in which denotes
· A = voter who is supporter of candidate A
· B = voter who is supporter of candidate B
· – = neutral voter

Output

Print candidate with maximum number of votes. If they have equal number of votes, print “Coalition government“.

Time Limit

1
Examples
Example 1
Input
14
–AB–AB—A–
Output
A
Explanation:
For starting positions where there is no opposition from supporter of B, supporter of A can promote in left side of the queue.                                                        The voting queue will then look like below:
A A A B – – A B – – – A – –
From 4th place (in voting queue) B supporter is moving towards the right side, simultaneously 7th placed A supporter is also moving towards the left side.
Then the voting queue will look like below:
A A A B B A A B – – – A – –
From 8
th place B supporter is moving towards the right side, simultaneously 12th placed A supporter is also moving towards the left side.                                          Then the voting queue will look like below:

A A A B B A A B B – A A – –
Since supporters of both A and B will reach the 10th voter at the same time,10th voter will remain neutral.
Since supporter of A at 12th place cannot move towards right, last 2 voters will not be influenced and remain neutral.                                                                          Then the voting queue will look likebelow:
A A A B B A A B B – A A – –
Since all voter have now cast their votes, election results can now be declared.
So final result is: A A A B B A A B B – A A – –
A has 7 votes, B has 4 votes hence, A wins the election.
Example 2
Input
4
A—
Output
A
Explanation:
Since supporter of A at 1 st place cannot move towards right, last 3 voters will not be influenced and will remain neutral.                                                                   Then the voting queue will lo